Archive for the Category ◊ Tools and Shop ◊

Author:
• Saturday, April 30th, 2022
Record holdfast

The Record #146 holdfast has generated some inquiries over the years, so I’ll address the topic in this post. I bought mine nearly 40 years ago, and while still a good tool, I would not recommend it now because there are better choices. 

I like the Gramercy holdfasts, which I have been using more than the Record for more than 10 years now. They fit in simple 3/4″ holes that you drill directly into the bench top. They cost only $39.95 per pair. I suggest buying the pair because it is helpful to use them together when you want a very secure hold to resist lateral force on the work piece. And you will certainly want more than one of these holes in your bench top because they can be used for many other holding tools, most notably Veritas products including Bench Pups, Wonder Pups, planing stops (I made my own out of wood), and their own holdfast.

If you do want to use the Record, you have to decide where to place the metal collar that it requires. This collar allows you to place lots of pressure on the work if you need it, making this the strongest holdfast I’ve seen. The collar is not really too obtrusive (I don’t recall having rammed a cutting edge into it) but it would not be there if I was setting up a bench now. Happily, I installed only one, those many years ago, and the location has worked out well. 

This collar placement allows a work piece to be held where I can chop dovetails over the right leg structure of the bench. It also can work in conjunction with the tail vise and dog system on the right side of the bench. The pad of the holdfast reaches close enough to the front and to the right side of the bench for practical purposes, and still extends about two feet from the right edge of the bench.

Record holdfast placement
Author:
• Saturday, April 30th, 2022
Hammer A3-31 infeed adjustment bolts

Lots of information can be found on this website about jointer-planer combination machines and the Hammer A3-31 in particular. I have received many inquiries, especially regarding setup and adjustment of the Hammer. One thing that I have not covered in detail is how to make the infeed and outfeed tables parallel to each other along their lengths. This is quite doable but not simple. 

Let us first set the context. As described in detail here, there are several logical steps to adjusting the jointer. In summary:

1. Start by verifying the flatness of the tables.

2. The width of the outfeed table is then made parallel to the cutterblock

3. The arc of the cutting blades must be consistently adjusted relative to the outfeed table. Here is a practical and accurate method applicable to most machines.

And here are the nuts and bolts on the A3-31.

4. The infeed table and outfeed table are then made parallel across their widths by adjusting the infeed table. Step 4 here describes the details, including for the Hammer. 

5. And now for the tricky part. The infeed and outfeed tables must be made parallel along their lengths.

For reasons similar to wanting a hand jointer plane to have a flat sole, so should the machine tables be adjusted. In my opinion, this adjustment should be done with a one-sided tolerance. Aim for the tables to be parallel, but a trace of convexity, like the letter “A,” is OK, but there should be no valley, like the letter “V.”

So, how is this done on the A3-31? In those earlier posts, I referred to “geometry” without presenting the details. You could work hit-or-miss to make the adjustment, but with four points of adjustment involved, it would probably be unnerving and cause you to give up, and then tolerate using a poorly adjusted jointer, which will in turn wreak all sorts of ugly havoc on your ensuing work. So, really, it is worth deciphering my geometric method. It works. 

I attached my handwritten notes, made years ago. Click on the little picture below for a full-size version. 

The front-side adjustment bolts are shown in the photo at the top of this post. 

The hinge-side adjustment screws are found under this plate:

Hammer A3-31 back plate

The pencils are pointing to them: 

Hammer A3-31 hinge-side set screws

These bolts must be both be loosened to allow the set screws to move: 

Hammer A3-31 hinge-side bolts

The method starts with placing a straightedge to extend the full length of the infeed table with a sufficient amount to also have a good register on the outfeed table. The infeed table starts low and then is adjusted upward to the first touch on the straight edge. If you have done all the previous work as described above, the place of the touch will tell you how the tables are aligned. In my machine, the tables were delivered tilted toward each other, like a “V,” so the first touch of the straightedge was at the outer end of the infeed table.  

Measure the gap as shown in my notes. Note then that I have simply diagrammed similar triangles among the straightedge-table and the pairs of adjustment screws, and calculated the amount of adjustment to be made at the appropriate screws. I then converted that into how much to turn each screw based on the thread pitch. 

OK, I think you can see why I did not include this in my original set of posts! It is a bit painful. I like math so I admit to a bit of joy in working this out, but for those A3-31 owners not so disposed, contact me and I’ll try to help. 

Thankfully, the machine holds its adjustments very well. 

Author:
• Sunday, February 27th, 2022
marking gauge

I built this gauge to incorporate specific features that I like and could not find in combination in commercially available models. 

This is a hefty tool with a Honduras rosewood (old stock) fence 4 1/2″ x 2 3/4″ x 7/8″. The contoured top edge is similar to my Japanese cutting gauge that has always felt comfortable in my hand. The lower part of the fence gives plenty of area to register on even thick stock, and is protected from wear by two 3/8″ x 1/16″ inlaid brass strips.

In use, my thumb is on top of the fence, with the muscle at the base of the thumb on the lower part of the contour, while the other fingers are below the stem where they can exert pressure on the fence where it meets the workpiece. I like they way the tool handles.  

The stem is about 11/16″ thick and 7″ long. It is shaped to go through a matching mortise in the fence that has three sides of a rectangle and a point on the fourth side – like a house. This wedge action makes the stem lock very securely with only modest pressure from the locking screw. Note that the peak on the length of the stem is cut back a bit to prevent it from bottoming out in the mortise. 

A feature that I strongly prefer in any gauge (with the exception of a mortise gauge) is the scribing point at the very end of the stem where I can see what it is doing. Here I used a simple half-point scriber from an old gauge. It is secured in a groove with a pan-head screw threaded into the wood.

marking gauge

The other end of the stem is set up with a groove and a tiny bolt that threads into an embedded nut. It holds the excellent Hamilton fingernail shaped knife, which works nicely as a cutting gauge. It also works well along the grain but there I more often like the heavier mark of the half-point scriber. This is two gauges in one. 

The locking screw is a 1/4-20 brass thumbscrew that travels through a bronze bushing and threads through an embedded cylindrical nut that is placed about 3/4 of the way along the route of the screw. I like the thumbscrew at the front of the gauge where it is fully out of the way when marking. The locking screw meets a 5/16″ x 1/16″ brass wear strip embedded into the stem. There is no loose metal button pad to get lost.

On the back of the fence, I sealed the hole for the cylindrical nut with a wooden plug. The locking system works very well but in retrospect I think it would have been easier to make or find a brass cylindrical nut, and simply leave one or both ends of it showing.

Overall, I’m pleased with the function, accuracy, and appearance of the result. As usual with any tool making, I suppose I could make another one in a third of the time and with no regrets, but I only need one. 

Author:
• Friday, January 14th, 2022
Veritas Bevel-Up #1

This is the Veritas Bevel-Up #1 plane, which I have been using for a year now. With a 1 7/32″-wide blade, it is indeed small but it works legitimately as a seriously useful plane. An ancillary tool, not a necessity, still I reach for it a lot more than I expected, so I want to share its merits with readers.  

This plane excels for small or concentrated work where its maneuverability and the vision of the work that it affords are significant advantages. In fact, even large projects involve plenty of detail work, such as a leveling touch-up at the shoulder of an assembled mortise and tenon, and fitting small components, especially those involving angles and round-overs. 

What makes this plane worthwhile for me is the feel. While there is some crossover in function with a block plane, this plane is different. Getting both hands in non-cramped positions on the handles of the BU#1 away from the sole affords feedback and control that I really appreciate. I can readily feel the tilt, and I like the excellent visual clearance. I also find that it handles significantly better than the Stanley style (bevel-down) #1.

I keep the BU#1 tuned about like a smoother with the blades mildly cambered. Because there is little momentum behind this small plane, it is particularly important to keep the blades sharp, especially if using a high attack angle. 

Veritas Bevel-Up #1

This plane has a 15° bed so you can sharpen with a secondary bevel of 30° for a good all-round attack angle of 45°. It is also useful to keep a second blade sharpened to 40° or 45° for a 55° or 60° attack, respectively, to use as a touch up plane on difficult grain. The short sole helps in this function. By the way, I would prefer a 20° bed but I’ve covered that issue at length elsewhere

Other features that I like are Veritas’ Norris-style combination adjuster with set screws near the front of the blade to make responsive lateral adjustments, and the adjustable front sole plate with a retainer set screw to easily regulate the width of the mouth. The sole of the BU#1 that I first received was slightly but significantly concave along its length but Lee Valley, being the great company that they are, exchanged it without bother. I slightly touched up the sole of the replacement, just because I’m picky. 

The BU#1 does not suffer from the unfortunate handle design that plagues most other Veritas planes. (They can be replacedtalk to Bill Rittner.) It has only a mild curve but this works well for this plane; it feels right and comfortable to me. 

My usual disclaimer: This review is unsolicited and uncompensated. My goal is only to point out good tools so you can make great stuff.

Author:
• Friday, February 05th, 2021
table saw

A reader who recently sold his table saw asked about managing without it.

If you have been reading this blog over the years, you probably know my opinion. Of the five major small shop machines – table saw, bandsaw, jointer, planer, and router table/shaper – the most dispensable is the table saw.

Don’t get me wrong, the table saw is certainly helpful and I don’t want to give up my Saw Stop. It is great for clean, accurate ripping and crosscutting among other tasks. But you can still build everything you want without that cast iron landing pad with an emergent blade, just not as fast or conveniently.

I suggest the following tools as keys to working efficiently without a table saw. The links give lots more information. 

1.  Bandsaw! This takes up much less shop space than a table saw, though you still need infeed and outfeed space. 

You can rip quite accurately on a well-tuned bandsaw. Decent crosscutting can be achieved with or even without the miter gauge though you will need outboard support. And, of course, the bandsaw is much more versatile than the table saw. 

No bandsaw either? I could still do just about everything by hand (but I really, really don’t want to) with my Disston ripsaw, wide and narrow-blade bowsaws, an inexpensive crosscut breakdown saw, large and medium ryoba saws, a Gyokucho “05” crosscut kataba, the wonderful Bad Axe hybrid backsaw, and a few more. 

2. Cross-grain shooting board with an appropriate, ideally dedicated, plane. Here’s how I made my current one. This will clean up your crosscuts like no other tool on earth, hand or power.

3. Long-grain shooting board. This underutilized technique is great for accurately and conveniently cleaning up short to medium length rip cuts. My current board accommodates work up to about three feet. This is very easy to make and does not really require a dedicated plane, though I prefer my Lie-Nielsen #9. 

4. A jack plane, or better yet, a jack and a jointer, round out the essentials for the shop without a table saw. 

This is all in addition to the usual complement of hand tools and machines that you would want to have with or without a table saw.

By the way, my longstanding recommendations for machinery remain: for your first machine, get a thickness planer. Then get a bandsaw. Then get a jointer, 12” or wider, if you can. Build a router table. And, yea, get a table saw too, if you can. 

Category: Tools and Shop  | 10 Comments
Author:
• Saturday, October 31st, 2020
PM-V11 plane blade

Disclaimer: Or what they do tell you but you might not notice.

Tools exist for making things. The same goes for your shop.

You need good tools to do good woodworking but there are plenty of forces pushing you, a woodworker, to exert undue attention on tools. First, woodworking tools are fascinating and cool. Then there is the constant pressure of tool marketing, often disguised as just “informational.” You know you are on the wrong track if you find yourself frittering away your valuable woodworking time fussing with tools to avoid the stress and uncertainty of actually making something.

I understand; I’ve been there.

It is fine to be a tool collector/restorer in addition to, or instead of, being a woodworker. But you might as well be clear about it. 

The key to choosing tools is to understand that for each tool, there is a threshold of quality below which it cannot properly do its job. Do not buy below that threshold because you will be burdened with tool-like objects that have no purpose in this world. A chisel with cheesy steel will always be a cheesy chisel begging you to upgrade.

Above that threshold, tool quality fairly reliably improves with increased price. However, the gains in performance soon become smaller and smaller as the price rises. 

So, recognize that threshold and find your comfort point above it. 

One more thing: The best time and place to decide to buy a new tool is usually when you are working in the shop, where things are real. Tool stores and shows can be dangerous. That said, sometimes they do open your eyes to a new type of tool or a greatly improved version. 

Bottom line: Keep your focus on making things and let your tools serve that purpose. 

Author:
• Wednesday, September 16th, 2020
1:4 French curves

These useful tools from Veritas are paired sets of French curves. The small and large members of each pair have the same curve pattern in a 1:4 ratio.

This allows you to draft on paper at the commonly used scale of 3 inches = 1 foot using the small curve of the pair and then transfer the drawn curve to the workpiece using the full size curve of the pair. Similarly, you can layout full size mock ups with the large curves, decide which one looks good, then use the corresponding small curve to incorporate the curved element into your design on paper.

Veritas French curves

The curves are made from 3mm-thick 3-ply birch. The largest one is 36″ long. The edges are not as smooth as plastic curves, so you might want to do some light touch up with sandpaper using a block to avoid rounding over. 

There are tiny holes at corresponding locations in each pair of curves that can be used as reference points to transfer a layout from one curve to the other in the pair. Numbering the holes, as shown here, helps keep track of the paired locations. 

1:4 French curves marked up

I often use long, very gradual curves in my designs, so I wish Veritas would also produce paired sets like these with very mild curves. I imagine this could be readily done with a CAD-CNC process. 

The key to using French curves is to mark the end points of a curve, then “fill in” the curve using at least one (usually two or more) additional reference point(s) to guide the placement of the template. Shift the reference points and use various segments of the French curve until the drawn curve looks the way you want. 

Consider using this wonderful rasp for truing curves in templates and workpieces. [If I made a buck from it, I might have called this a shameless plug.] 

By the way, why “French” curves? Beats me, but with a little online research, I learned that French curves are based on segments of the Euler spiral, named for the great eighteenth-century Swiss mathematician. The Veritas curves approximate a common Burmester set, named for German physicist-mathematician Ludwig Bermester (1840–1927). So, why aren’t these types of curves called “German curves?”

Category: Product reviews, Tools and Shop  | Tags:  | 2 Comments
Author:
• Monday, August 31st, 2020
DIY tools

I do not like to use my high-end edge tools for rough and tumble DIY projects where a sharp edge has a good chance of meeting up with a nail. Similarly, precision hand tools such as a Starrett square have no business sliding about in mystery debris.  

So, even though my classy hand tools are fully capable of handling rough jobs, I prefer to use my set of utility tools for most repair work on the Magic House. (“Magic,” you know, because it makes my time and money disappear.)

There are a couple of ways for a serious woodworker to accumulate these DIY tools.

You might buy them specifically for such work. Good examples are above. The little Rali block plane has replaceable blades. It does not seem to be available any more but most any cheap pocket/block plane will do. That cheapo square is actually decently made and pretty accurate. The DeWalt tape is also the one that comes with me on wood buying trips.  

Sometimes, especially early on in learning woodworking, we try to save a few bucks by buying a tool that seems good enough, but later proves to be a poor call for fine work. That is how this old Stanley chisel has survived all these years. It easily sharpens to a decent edge that I don’t mind abusing for DIY work. I replaced the round rasp with a hand-cut version but the cheap one is just fine for enlarging a rough hole in plywood. The screwdriver makes a great paint mixer and general hacking/prying tool. 

more DIY tools

Maybe you did not recognize the value of quality tools, or maybe you just did not know how deeply you were going into woodworking. Either way, an upgrade does not always mean waste. 

The take home point: Do not buy tools for their own sake. A tool has a purpose. Match the tool to the job – the one at hand or even the one to which you aspire.

Category: Tools and Shop  | 4 Comments
Author:
• Wednesday, July 08th, 2020
router table miter slot

Devoted readers (thank you!) know that I like to keep my router table simple but very capable

The router table is truly a key tool in the small shop but there is a wide range of complexity and cost involved. I admit to being intermittently tempted by router lifts, tracks and slots in the table and fence, bit changes and height adjustments from above the table, and micro adjustability of almost everything.

Yet, my simple set up continues to do everything required. It consists of an MDF top and fence on a 2×4 base, dust collection, and the Bosch 1617EVS held in a dedicated base attached underneath the table. Moreover, the flatness accuracy of the top equals the best tables reviewed in Fine Woodworking magazine #237, and it substantially exceeds most of them. Some of those rigs cost more than ten Bens. 

But what about routing a rabbet or profile on the end of a narrow stick, or, more challenging, a dado in the middle of, say, a 4″-wide rail? I again admit to being tempted by an impressive cast iron tabletop with a miter gauge slot. 

router end grain on router table

For routing on the end of the stick, the workpiece alone gives too little registration against the fence. Therefore, I have usually used a squared piece of plywood or MDF, about 10″ x 12″, to register the workpiece against the fence and prevent tearout at the trailing edge. (See photo just above.)

However, sometimes it is handy to use a miter gauge, especially for a short dado. This also allows me to register the left end of the workpiece against the miter gauge stop for a repeatable task.

Well, there just is not enough depth in a 3/4″ MDF top for a metal-lined track for a miter gauge. (Unlike for a T-track, which is more shallow.) Thicker MDF is an another option but that would mean a new table top that would require a recess to mount the router base. A bare slot in the 3/4″ MDF is also problematic in that it would wear quickly. I could line the slot with UHMW tape but it would be hard to get the width just right to avoid having to adjust my miter gauge bar every time I brought it over from the table saw. 

So, as usual, I turn to the late Pat Warner’s writings for a solution. On page 99 of his The Router Book, there is a simple way of making a temporary “slot” in your MDF router table top. My version uses nominal 1/2″ MDF with adhesive UHMW tape on inside edges. (See the photo at the top.) The outer board is screwed down in the near right corner to give more clearance for the miter gauge head, and elsewhere the boards are clamped.

This allows me to use my table saw miter gauge – the wonderful Incra 1000HD and its adjustable end stop. Note that I do not need to adjust the width of the bar. Instead, I retain the setting that works for the table saw, and then for the router table, simply set the two MDF boards snugly against the bar for a wobble-free fit. A backer board prevents tearout at the trailing end of the workpiece. The router table fence is not functional for the cut itself but is close by for dust collection if possible.

It looks like I just saved several hundred dollars yet again. 

Mmmm, that walnut looks nice.

Author:
• Sunday, June 28th, 2020
DeWalt cordless sander

The DeWalt DCW210 is a cordless 5″ random orbit sander that is powered by the company’s 20-volt lithium-ion battery system.

Smitten with DeWalt’s 20V Max series of tools, it is a bit like dealing with Apple stuff. I know I’m being played but the products are just darned good. 

Handling is excellent. Weight, vibration level, and control are comfortable. With a top grip, the only option, the sander tends to meet the work squarely with no tendency to tip or gouge. At least with a smallish 2.0 amp-hour battery, balance is excellent. The rubberized area enhances the feel, and the on-off switch is easily accessible from the grip position. 

This is a finishing sander, not a stock removal hog. In that context, it has plenty of power. It is similar to my Bosch ROS20VS, if not more aggressive. The DCW210 has a standard 8-hole base with hook-and-loop disc attachment, and runs with a 3/32″ diameter orbit. The brushless motor is very efficient, so I read. It has a variable speed dial, also accessible from the grip position, but I rarely use that option on a sander. 

You’re going to love this as I do: the motor brake stops the motion immediately when you hit the power switch. Hallelujah!

Dust collection with the onboard bag is surprisingly good but of course, no match for sanding with a vacuum hose. (I vacuumed up the tool nice for the photo.) The bag’s good-sized plastic collar and locking system makes it easy to use one hand to detach and attach with a nice positive click. A spring that lines the bag can be compressed and popped to “shake out” stubborn dust. I find it is more useful for allowing a vacuum hose to thoroughly clean out the bag without it being sucked into the hose. 

The outlet diameter will not fit standard shop vac hoses but this does not matter to me because using a cordless sander with a hose would pretty much negate the advantages of having no power cord. So I will use this sander without tails of any sort.

I cannot offer data on how long the battery charge will last. After a while of sanding, I check the charge-level indicator on the battery and replace it if it is low. With just two extra lightweight 2.0 Ah batteries on hand and using the DCB113 charger, I could keep working indefinitely. You can also buy higher capacity batteries but I guess at some point the weight would get uncomfortable. Anyway, this is a finish sander suited for relatively light work. Note that DeWalt charger models vary considerably in their charge time.

I will still use my bigger Bosch 3725DVS (3/16″ diameter orbit) with its cord and a vac hose for heavier work but the DeWalt DCW210 is now my go-to tool for finish sanding. 

This review is unsolicited and uncompensated. I just want to help you choose good tools. 

Category: Product reviews, Tools and Shop  | Comments off