Archive for the Category ◊ Jigs and Fixtures ◊

Author:
• Saturday, February 01st, 2014

IMG_1176_edited-2

These practical Japanese toolboxes with characteristically clean design and clever functioning are based mostly on Toshio Odate’s article in the October 1995 issue of American Woodworker magazine, pages 58-59, available online.

Overall dimensions of my version are 32 1/2″ long, 13 1/2″ wide, and 10 3/8″ high. The primary wood is quartersawn Douglas fir, obtained as dimensional 1-by stock. The tight grain reminds me of the raked sand in a Japanese zen garden.

IMG_1179_edited-2

The sides and ends are assembled much like Odate’s but using deep thread screws instead of nails. The lower edge of the end “handle” is undercut with a 15° bevel to help the four fingers grab it reliably for lifting the box while the thumb comes over the top end piece. I added a like-sized piece below it onto the main end piece for extra rigidity.

The bottom is 3/8 Baltic birch plywood fit into a rabbet, glued, screwed, and nailed. I preferred the plywood to avoid seasonal dimensional conflict posed by a solid wood bottom fixed cross grain to the end pieces. True, nails allow some give but the modern material avoids the risk of splits and is strong. Eight hard plastic feet will minimize abrasion wear on the bottom as the boxes are inevitably slid on hard floors.

IMG_1181_edited-2

For the top, I similarly went modern with cherry veneered 3/4″ plywood. I found it by chance on sale but I like its looks with the Doug fir. The plywood allows a tighter tolerance between the top and the sides than would be possible to maintain with solid wood. The sliding-lock top is based on the traditional version as described by Odate, but with a very clever wedge lock described by George Snyder in an article on the Woodcraft blog. (Thanks to Wilbur Pan for the link.)

IMG_1183_edited-2

IMG_1177_edited-2

I added contoured undercuts on both edges of both top battens to make the top easier to handle for insertion and removal.

IMG_1178_edited-2

I’ve had the Odate article bookmarked on my web browser for years, so I’m glad I finally got around to building these boxes. The decision to use plywood for the top and bottom, and the wedge lock for the top resolved my reservations with the traditional design as presented by Odate. Then, finding the beautiful Doug fir got me building.

These toolboxes will no doubt see plenty of rugged use but with their bombproof construction they should be up to the job. They were fun to build.

Author:
• Tuesday, January 28th, 2014

IMG_1163_edited-2

The Veritas Shooting Sander uses the principle of shooting – a guided vertical cutter is pushed to engage a work piece that is stably oriented by a surface and a fence – but uses sandpaper instead of a plane blade as the cutter. It’s simple and useful.

Though it certainly is not intended to replace shooting with a plane and a good shooting board, I’ve been so far finding it handy for odd-shaped parts that cannot be fully backed by a conventional shooting board fence, and for small parts.

As we would expect from Veritas, the tool is well made and thought out. The accurately made anodized aluminum extrusion body and the nifty adjustable wooden handle are good reasons to forego a shop-made attempt at this low-cost tool.

The shooting board I made for it is straightforward but there are a few fine points. The base is 3/4″ MDF, 23″ long. The work surface is 7 3/4″ wide with a nice straight edge against which the sander runs. The track for the sander is 2 1/8″ wide with a 1″-wide outer guide rail.

The work surface must be elevated at least 9/32″ above the track surface for the sandpaper to meet the lowest part of the work piece. I made the work surface from two pieces of MDF (just what was handy) for a total thickness of 11/32″, which gives a little margin for error when applying the sandpaper to the tool. That is, the bottom edge of the work piece is sure to be within the width of the sandpaper, even if I don’t apply the PSA paper to the tool perfectly accurately.

IMG_1164_edited-2

The fence is about 1 3/8″ high, screwed down 3 1/2″ from the end of the board with slightly oversized clearance holes that allow fine tuning for squareness.

Break in the shooting board just as you would for a plane shooting board by running the sander along the edge of the work surface so that a tiny width of sandpaper, say 1/16″, cuts a miniscule rabbet along the edge of the work surface. Then screw down the 1″-wide guide rail on the outside of the track so it is snug against the sander for the full length of the track.

IMG_1166_edited-2

A generous amount of oil-varnish finish toughens the MDF surfaces. Finally, I waxed the track. It all works well.

1 1/4″ wide adhesive-backed sandpaper strips are used for this tool. These are most economically made by slicing 2 1/2″ Klingspor PSA abrasive roll paper down the middle of its width. The paper strips that Lee Valley supplies are Klingspor’s.

IMG_1165_edited-2

After removing the first piece of sandpaper from the tool, I cleaned the residual adhesive off the tool with a citrus-based remover, but did not then clean off the slightly greasy residue of the remover. I found that subsequent sandpaper stuck plenty well enough and left hardly any residual adhesive when removed.

The tool is very easy to use but there are a few caveats. The sandpaper leaves grooves that are surprisingly deep for a given grit. That is simply because the tiny grits on the sandpaper are running in the same tracks over and over, unlike with regular hand sanding where the slight variations in movement erase most of the tiny grooves.

The work goes slower than shooting with a plane, especially since sandpaper seems to cut slowy on endgrain. Also, the thickness (height) of the work piece is limited to just under 1 1/4″.

The tool can be used ad lib to sand odd angles without using the fence by holding the work piece very firmly and offering its edge at the desired angle (such as indicated by a scribed line) to the sander running in the track.

All in all, this so far has been a worthwhile addition to the shop. My sense is that it will increasingly become a valuable quick “problem solver” tool that I’m very glad to have.

Category: Jigs and Fixtures, Tools and Shop  | Tags:  | Comments off
Author:
• Tuesday, December 10th, 2013

IMG_1094_edited-2

The review of router tables and lifts in the Fine Woodworking Tools and Shops issue (#237, Winter 2014) prompted me to again think about the subject. I have to admit, after reading about all the nifty gadgets, I was tempted to complicate matters and foul up my happily working simple system, which is described here, here, and here.

Naaah.

I recently added a T-track system instead of F-clamps to lock the fence in place, and a while ago upgraded to heavy-duty locking casters, but otherwise the setup is the same. There is no removable plate, no router lift, no above-table height adjuster, no fence microadjuster, no miter gauge track, no above-table bit removal, and no insert rings. No shoes, no shirt, no problems.

So, how does this home grown model “Easy 2” stack up against the models reviewed in FW? Let’s look:

Price: At a total cost of about $180, which includes the extra Bosch base, the Easy 2 is $470 less than the “Best Value” and $920 less than the “Best Overall” system in the review.

Flatness: The E2 has an intended crown of .003″ over the full length of the table, and, owing to the lack of an insert ring, a deviation of less than .001″ in the critical area around the bit opening. This beats all the models tested with the possible exception of the Festool, which has a .002″ dip. I agree with the author that a slight crown is preferable to a dip. I disagree, however, that a dip as high as .030″ is acceptable for quality work.

The Big Easy achieves this fine accuracy by employing the wonderful flatness tolerance of stock MDF plus shims. Here is the undercarriage of the table with supports across the width of the table near the router base, along with blue tape shims, aka “microadjustments.”

IMG_1092_edited-2

Fence: The E2’s continuous fence is flat and square within .001″. A split-fence attachment is easily installed and removed with finger knobs.

Here is a rear view of the fence locking system:

IMG_1096_edited-2

Dust collection: With simple fittings available from Rockler, the E2 is probably as efficient as all of the tested models except the two with enclosures.

Bit height adjustment: The Bosch microadjustment dial easily allows at least .004″ adjustments with no discernible backlash using a dial that can be zeroed out at any time. Each of the easily visible increments on the black dial is equal to the thickness of a typical sheet of paper.

IMG_1097_edited-2

I do not have a device to measure vertical alignment as described in the article, but this is not likely to be a significant issue because the router base, which has been flattened on a granite surface plate using sandpaper, attaches directly to the MDF that is manufactured to excellent tolerances of flatness and thickness.

It is necessary to squat to reach under the table to attach the router motor and to make height adjustments. I do not mind a bit, but for those who prefer to avoid the latter, Bosch makes the router base usable with a simple hex key to allow height adjustments from above.

My intent is not to disparage the fine products reviewed in the article, but rather to demonstrate that there is a different, simpler way for those who might prefer. This router table system works – it allows me to build what I want.

IMG_1095_edited-2

[By the way, I disavow the detail in the plan drawing of the shop on page 58-59 of the same issue, which shows the woodworker’s router table with an insert plate and an insert ring. He also doesn’t own a two-wheel grinder and he wouldn’t lay a plane on its side. Nice shop though.]

Author:
• Tuesday, August 13th, 2013

IMG_0787_edited-2

It pays to have a wide repertoire of options to hold wood in place while working on it. Here is a very simple, albeit unoriginal, device that can be used in conjunction with many of the other methods discussed elsewhere on this blog.

The idea for these planing stops came to me from a version made by Veritas. The adjustable feature of the Veritas is nifty, but I have an inhibition about forcefully pushing my planes toward large pieces of metal, even aluminum. The shop-made version is super-simple, super-cheap, and wooden.

IMG_0796_edited-2

These are made from 15″ x 1 3/4″ x 7/32″ poplar with 1 /1/2″-long pieces of 3/4″ dowel attached with brass screws, deeply countersunk. I spaced the dowels to accommodate the holes in my workbench. If I had great forethought several years ago when boring those holes, each pair in both directions would be separated by a constant distance. As it is, I had to make three planing stops, each with a different dowel spacing, to make full use of the hole patterns. This is not a problem because I want to have a few stops in any case.

The low profile of these stops allows their use with thin workpieces but is still sufficient to secure thicker boards.

For planing along the length of a board, two dogs usually suffice to secure the wood. However, vigorous planing with the scrub or jack, working diagonally or directly across the board, tends to dislodge it. A third stop is very helpful in these cases. Similar situations often arise in random orbit sanding, routing, and carving. Workpieces that have curved edges, live-edge boards, finished drawers, and wide panels also can thwart the simple two-dog work holding system.

The photos above are at the right side of the bench with the tail vise and wooden bench dogs. (The blue Record holdfast hole is not involved in this system.)

Below is the hole pattern on the left side of the bench. Following are some of many possible configurations of planing stops, Veritas Bench Pups, and bench end stops.

IMG_0790_edited-2

Here the planing stop is set up as a simple end stop, assisted by a single Pup:

IMG_0789_edited-2

Here, Pups in the front vise and the two stops at the end of the bench work with the planing stop:

IMG_0794_edited-2

Yet another variation, to put work further outward:

IMG_0791_edited-2

With all of this gear, something can probably be worked out to manage just about any work piece on the bench top:

IMG_0792_edited-2

Addendum:

Before settling on this version, I experimented building an adjustable version using different types of screws with the heads projecting from the tops of the dowels. The heads would then run in a T-slot in the stop piece. This would make the dowel positions adjustable like the Veritas version.

It became too finicky for my taste, especially since I wanted to keep the stops less than 1/4″ thick so they could be used for panels and other thin work pieces. The adjustable design can be done using a thicker stop piece. Readers may want to give it a try, but I like the thin and simple version.

Author:
• Wednesday, April 03rd, 2013

IMG_0972_edited-2

Having covered the design and construction of the sharpening station in the previous four posts, I will now discuss how I use the system. This is not meant to detail my sharpening techniques, but, in general, I want to get an excellent edge on the tools as efficiently as possible so I can get back to working wood.

First, I gather the dull tools and assess their requirements. Then I make a trip to the bathroom to fill the pump spray bottle, get water to fill the Tormek tray if I will be using it, and do any emptying required on my part since failing to attend to this last necessity will surely interrupt the rhythm of a sharpening session.

At this point, the entire operation is independent of a water source. I get the Shapton stones out from their dry storage and select the shopmade angle gauges needed after consulting my recipe chart. I bump the bridge into a fixed position, then secure the first stone in place with a tap on the wedge from the tool to be sharpened, and then give it a little spray of water. I lean the other stones on the left wall of the basin with their bottoms facing outward. I store the tools on the right side of the sharpening bench or, if there are several, on the left end of the workbench on top of the Tormek cover.

IMG_0973_edited-2

Grinding on the Tormek is done first if needed, but most sessions involve only honing secondary bevels. I work through the succession of stones, spray clean each when done, and lean it against the basin wall. Depending on the number and types of tools being sharpened, I may go through all the tools with each grit, or bring one blade through the whole process. In any case, I avoid letting wet steel sit for long because corrosion can start quickly, especially in O-1 steel.

Some blades, such as a smoothing plane iron, get a light stropping with diamond paste on leather.

Before leaving the bench, I reflatten each stone on the bridge with the Shapton diamond plate (trying to forget what I paid for it, even when it was cheaper than now), then rinse and pat dry the stones, and store them leaning against the wall or the outside of the sharpening box. Later, I return them to their boxes.

Just about all of the mess and water is contained in the basin, which can be emptied now or later. Since I generally like a tidy shop, I wipe away any errant mess on the sharpening bench with a rag or paper towels.

I oil the tools as soon as possible. Most important, I get back to working wood with sharp tools as soon as possible!

Once again, I emphasize that this is the setup and system that works quite well for me. I have presented it in hopes that readers will find it helpful for anything from gleaning a few tips to using the entire design. In any case, as I always emphasize, craft is necessarily personal, and each woodworker must find what works best for him or her.

Author:
• Friday, March 22nd, 2013

IMG_0979_edited-2

The bridge gets soaked repeatedly, of course, so to avoid wood movement and distortion as much as possible, I used quartersawn mahogany and finished it heavily with polyurethane. It is 3 3/16″ wide, 19″ long, and 1 3/16″ thick. Aluminum or painted steel might be good alternative material, though the wood has endured very well.

A key feature of this whole system is its absolute rigidity in use. The bridge must not shift at all while you work blades back and forth on the stone, yet must be easily removable for clean up while wet.

Cleats, 4 5/8″ long x 1 1/2″ wide x 3/4″ thick, are each attached to the bridge with a single stainless steel round-head wood screw and a nylon washer, just loosely enough to allow them to freely rotate. First, screw the rear cleat in place. Then, to position the front cleat for attachment, use a shim about 0.04″ (1 mm) thick (such as a non-flexible 6″ rule) between it and the outer wall of the box. This will create a slight gap.

In use, a firm sideways bump at the front end of the bridge, to angle it and thereby close that gap, makes it lock tightly to the walls of the box. An opposite bump releases it. This is quick, stable, reliable, and durable. If you prefer it to be less diagonal then shown here (which works well for me), use a thinner shim when attaching the front cleat.

IMG_0982_edited-2

The stone is held firmly in place on the bridge with a simple wedge system. Attached using SS screws, the rear cleat is at 90° and the front cleat has an angled edge, placed to position the stone slightly toward the front of the bridge. The cleats are about 5/32″ 9/32″ thick, which will keep them below the level of my Shapton Glass Stones for a long time.

The wedge angle of 10° works well; a shallower angle might make it hard to remove when wet.  The loose wedge is 4″ long so its ends extend beyond the sides of the bridge to allow easy tapping in and removal. I usually use the blade I’m working on to tap the wedge.

The cleats have been ideally placed for the 8 1/4″ long stones that I use, but the loose wedge is long enough to accommodate stones from about 7 3/4″ to 8 1/2″.

I’ve tested the stiffness of the bridge by leaning on it and using a straightedge and feeler gauge. It deflects only 0.0005″ (half a thou) at most. Nonetheless, to avoid error accumulation, I flatten the stones while wet after use, still in position on the bridge, using a diamond lapping stone.

Next: I’ll describe how I use the system.

Category: Jigs and Fixtures  | Tags:  | Comments off
Author:
• Friday, March 22nd, 2013

IMG_0982_edited-2

This and the next installments of the series will describe the box-basin-bridge apparatus for hand sharpening. This setup is quickly put into service and can be left as is after finishing the sharpening session – the mess is contained and may be efficiently cleaned up later.

Good ergonomics are important to this system, especially proper height adjustments. The height of the bench and its components will depend on your stature and body mechanics, the grinder and stones you use, how you construct the box-basin, and your sharpening techniques. Therefore, if you are building a sharpening station like this (or any other kind), please do not accept my height specifications. Rather, experiment and adjust everything to your situation, then build. By the way, I am right-handed.

The basic idea is a plastic basin spanned by a bridge that holds the sharpening stone, but the basin is not nearly rigid enough, so a strong box must surround it.

Buy the tub first, then build the box to fit snugly around it. In my setup, I used a sturdy Rubbermaid brand storage container with outside measurements of 15 3/4″ x 10 3/4″ x 5 3/4″ high, including the 1/4″-wide x 1/2″-high lip that surrounds the top edge. The inside dimensions of the box are therefore 15 1/4″ x 10 1/4″, and 5 1/2″ gives a little extra space in height.

IMG_0975_edited-2

The box is made with butt-jointed 3/4″ plywood sides, and a 1/4″ ply rabbeted bottom, all glued, screwed, and finished with polyurethane. The inside seam where the bottom meets the sides is caulked. A polycarbonate spray shield, attached with screws, covers the left outer side and extends 6 1/4″ above it. The corners are rounded, the edge is made more visible with red marker, and the seam is caulked.

IMG_0974_edited-2

The box is screwed to the benchtop through the inside of the bottom near each corner. It is positioned just 1″ from the front of the benchtop for good ergonomics, with 5″ of handy space to the right.

IMG_0976_edited-2

Note the notches in the front and back walls of the box to permit easy removal of the basin. As you can see, I made them unnecessarily large and had to insert a patch at the front to extend the area where the bridge could grip.

The bridge must rest on a rock-solid footing, not the top edge of the basin, so hardwood risers, 3/8″ wide and slightly more than 1/2″ high, are screwed to the top edges of the box at the front and back. It is important that they are proud of the top edge of the basin and slightly shy of the outer walls of the box.

IMG_0978_edited-2

There is still plenty of room for the Tormek on the left side of the bench.

IMG_0984_edited-2

Next: the details of the bridge that holds the sharpening stones.

Category: Jigs and Fixtures  | Tags:  | Comments off
Author:
• Thursday, March 14th, 2013

IMG_0968_edited-2

The base frame is 23 7/8″ wide, 15 3/8″ deep, and 24 1/2″ high, built using the straightest, driest, clearest 2x4s I could find at the local home center.

The lower front and back rails are notched into the legs. The lower side rails are simply butt-jointed and screwed from the outside to the front rails, and from the inside to the legs. Use glue and #12 or #10 x 3″ deep-thread screws. A leveler is installed on the front left leg.

The spliced sections on the lower right legs are evidence of some of the evolution of the bench. There had been heavy-duty locking casters there, but I found I did not need them, and they slightly decreased the rigidity of the structure.

The 2×4 upper side rails are notched into their widths to accept the tops of the legs, and are glued and screwed in place. There are no front or back top rails. The back and sides are closed in with sturdy 1/4″ 5-ply, glued and screwed to the 2x4s for rigidity.

IMG_0969_edited-2

The top measures 33 7/8″ wide x 19 1/2″ deep, and is centered laterally but overhangs the front of the frame by only 1″. The surface of the lower shelf is 10 1/2″ above the floor. Both are 3/4″ exterior-grade SYP 5-ply attached with strong steel L-brackets. The top is also screwed to the upper side rails from underneath.

An important feature is the 3/32″ polycarbonate sheet over the top and lower shelf to protect them from water. (I use waterstones, but the surfaces should be likewise protected from oil if you use oilstones.) Acrylic can also be used. The top sheet is secured with small stainless steel flat-head wood screws, carefully countersunk, which is nicer than the round head aluminum screws and tiny rubber washers that I used for the lower shelf.

The upper (inner) shelf, 3/8″ 3-ply, is spaced 5 1/8″ above the lower shelf and is 10″ deep. It is screwed to simple side supports that are screwed all the way through into the legs.

The top surface of this sharpening bench is 25 1/4″ above the floor. This is what works for me (at 5’9″) with the box-basin-bridge apparatus (which I will detail later) for hand sharpening, and the Tormek machine. I can work comfortably, bringing body weight to bear as needed.

The height is a critical issue, but everyone is different and so you must decide what will work for you. I suggest, as the most reliable approach, going through the same sort of process that I have recommended for deciding on a workbench height. Yet, if after building and then using your bench for a while, you find that you misjudged, don’t worry, you can always shorten the legs or even splice on some extra.

The drawer is 15 3/8″ deep overall with a 12 1/2″ wide x 4 1/8″ high front. The construction is simple rabbet and groove using exterior plywood, glued and screwed. The front and back are 3/4″ thick, the sides 1/2″, and the bottom 3/8″. Inside depth is 3 3/16″. The drawer is side-hung, using 1/2″ x 1/2″ cherry rails that fit in matching grooves in the 1 3/8″-square oak supports, which are screwed to the top from underneath.

Go heavy duty on everything with this. This sharpening bench is the type of tough, practical, non-fussy shop fixture that I like. I think it also has its own rugged good looks that fit in well in a woodshop.

Next: the box, basin, and stone-holding bridge apparatus.