Author:
• Sunday, April 30th, 2017

plane iron camber

Revisiting this matter, there need be no confusion as long as you keep in mind that the amount of camber that belongs in a plane blade is a function of how the plane will be used, and particularly, the kind of shavings the plane will take. Without getting hung up on numerical absolutes, here are three reliable guidelines that I use, which I hope readers will find helpful.

I wrote about camber in 2009 but I think some of it bears restating, and there are a few things I would like to add.

For a smoothing plane blade: Make a very small camber to allow the plane to produce very thin shavings, perhaps .001″, that are thickest in the middle and feather out to nothing at barely less than the full width of the blade. This produces only imperceptible scallops on the wood surface. The finer the shavings you intend to take, the shallower the camber should be.

For a jack plane blade: Use more camber to take thicker shavings without producing stepped-edge “gutters.” Vary the camber according to how aggressively you want to remove wood with the plane. The camber also makes it easier to direct the cut to take down the high spots on the surface of the board.

For a jointer plane blade: Make a very small camber to make the plane capable of correcting an out-of-square edge by laterally shifting the plane without tilting it. Position the deeper part of the camber over the high side of the edge to bring it down, and thus incrementally work toward a square edge. The camber also creates a miniscule concavity across the width of the edge of the board, which ensures there is never any convexity there, which would produce an inferior joint.

So, there’s the essentials. Coming up, I’ll revisit the bevel-down/bevel-up issue (that I brought up in 2009) in a quantifiable but intuitive way, look at the effects of skewing the plane, present a thought on chipbreakers, and maybe another thing or two that popped into my head while I was in the shop but forgot to mention so far. Then, we’ll take a look at the Tormek SE-77 jig, which I’m liking a lot.

Category: Techniques  | Tags:  | 4 Comments
Author:
• Sunday, April 30th, 2017

woodworking hardware

When installing hardware, it is important to have precise control of the location of the pilot holes for the screws. The options are to start with a mark made by a scribing point or awl, then use that to locate the drill bit, or drill the hole directly without a preceding mark. Here is my approach.

I mark first, and most of the time, I try to center the mark in the countersunk hole of the hardware. Sometimes, however, I will intentionally very slightly decenter the mark to laterally “pull” the hardware tightly into the mortise, or to one side of a mortise that was made a bit too large. In any case, I do not want a mark that will result in the screw pulling the hardware in the wrong direction.

The key is that you want that control. It’s that one-sided tolerance thing again. I love that concept.

Here is my low-tech, reliable method.

I use a scriber point or pyramidal awl to prick a starting mark for the drill bit. It is surprisingly easy and accurate to judge just by eye if the mark is centered in the hole in the hardware. Good lighting is essential, as in the first photo below. A crescentic shadow on the side of the hole will cause you to misjudge the center of it.

locating hardware screws

The mark in the photo below is actually centered but the shadow interferes with judging it.

Sometimes I use a fine point scribe (the two tools to the left in the photo below) to make a tiny mark to seat the point of a brad point bit. Other times I use my wonderful Czeck Edge awl (at right in photo) to start and enlarge a hole suitable to seat a twist bit. Twist bits are commonly available in more sizes than brad point bits, which is particularly helpful for using tapped holes and machine screws to mount hardware in wood.

marking awls

This simple approach makes it easy to reliably make a deliberately off-centered mark. Just as important, it is also easy to move a mark made with a scriber or awl. Just stab the sharp point into the sidewall of the original mark and push or swish the tool to make a slightly bigger mark with a new center location.

woodworking awls

How about self-centering bits (one brand is Vix bits)? In all the brands I have tried, there is always a bit of wobble of the drill bit within its housing. Even though I would drill squarely to the work surface, there is some random error in the location of the hole. The errantly drilled hole is then nearly impossible to “move.” Furthermore, there is no reliably controlled way to produce a deliberately off centered pilot hole. Depth control is also difficult or the depth is inadequate. Such bits have been banished from my shop for some time.

How about center punches – those that you tap and those that are spring-loaded in various ways? They avoid some of the disadvantages of self-centering drill bits, but all of the ones I have tried, even Starrett’s, also have some wobble of the scriber within its housing. They are faster than the low-tech approach I use but less consistent and, again, there is no good way to make deliberately off-center marks. Such tools also have been banished from my shop.

In summary, to accurately locate pilot holes for hardware screws, go low tech, use your skills, keep in mind the one-sided tolerance concept, and use the skillful adjustability of craftsmanship.

Category: Techniques  | 9 Comments
Author:
• Friday, April 21st, 2017

perfection?

Perfection. We might think we want it in our woodworking, yet it does not exist. But for the craftsperson, concern with perfection, far from being a benign wish, has a dark side – it can distract you from understanding excellence.

Consider the example of a simple straight line, such as the straight edge on a board. You may think you are at least trying to plane that edge “perfectly” straight. Upon inevitably failing, you say, “OK, I’ll try again,” this time harder and more carefully.

But where is the end point? It certainly is not perfection. You have failed in that pursuit, and you always will. The perfect becomes the enemy of even the good as hesitancy, frustration, or obsessiveness creep in. Continuing this way will retard your growth in the craft.

There is a better way. It is to understand and pursue excellence. There is a range of excellence, and you ought to recognize when you achieving within it. It is also important to accept when you have fallen short – of excellence, not perfection – and then take realistic corrective action.

So, that straight edge is not, in fact, ever perfectly straight but instead has a trace of concavity along its length because you know any convexity would result, for example, in an inferior edge joint. Excellence in this case is understanding an appropriate range of camber, and being able to reliably produce and assess it.

The same principle can be applied to nearly every critical process in woodworking.

One of the worst manifestations of the perfection delusion is the “perfect every time” come-on used by tool marketers and, particularly regrettably, in some instructional materials. A woodworker who then inevitably achieves something less than perfect is apt to incorrectly suppose that he did something wrong, or doubt his capability.

Awaiting perfection, your work is never finished, or maybe never again attempted. Better to work toward excellence. Certainly, distinguish it from mediocre. That is the realistic and hard work required in the real world of craft.

Category: Ideas  | 4 Comments
Author:
• Saturday, April 01st, 2017

I was asked not long ago by a major software development company, whose product line includes architectural and design software, to consult on an exciting project that is now in the latter stages of development. Of course, I cannot name the company, which I will call “G, Inc.” (No, not them). However, I do not need to hide my excitement – this has the potential to change how we approach our woodworking.

It is a furniture genome project of sorts. G, Inc. has compiled an enormous data bank of the elements of style of countless pieces of furniture. This includes proportions, motifs, woods, hardware, characteristic curves, secondary materials, joinery, carvings, and much more.

I worked with two G, Inc. project leaders, an architect and a programmer, who explained that the data is drawn from sophisticated visually mapped analyses of furniture from numerous sources. The data exists as visual files with verbal tags such as “cabriole legs,” or “hand-hammered hardware,” and so forth. There are also broader categorizations such as “few curves,” or “carvings,” and so forth.

Here is how you interact with the software. Again, I think this is really exciting.

You start with a piece of furniture that you want to make such as a “tea table,” or, simply, a “small table.” Then, to move quickly in narrowing your preferences, you enter a style category such as American Queen Anne c. 1740, Arts and Crafts, or Nakashima.

But here is the really cool part. If you lack any appreciation for style, you can sift through displays of furniture elements, accepting those that appeal to you and rejecting those that do not. You do not have to conjure anything of your own. The software detects your style tendencies and through the magic of Artificial Intelligence decides what you really like. In short order, you will have your table design. All that remains is to build it.

And even for building, it coaches you through everything. You set a slider scale for joinery ranging from strictly traditional (e.g. mortise and tenon joints) to anything-goes modern, which might include pocket screws, for example. The result is a 3D CAD rendition of the table, plan and elevation drawings, and full-scale drawings of the joinery and details.

The developers are giddy that you will not have to use your imagination at all. After all, your job is to follow the Masters and this program makes it pleasantly easy to do just that. This way, you can be assured that you will spend your efforts making only real furniture – the tried-and-true good stuff. There is no need to work through your own ideas, which are probably inferior anyway.

As with all software, this currently contains a glitch, which is that it only seems to be operative on one calendar day of the year.

Today.

“You just have to try; you have to use your imagination.”

–Sam Maloof

Category: Ideas  | 8 Comments
Author:
• Friday, March 31st, 2017

Bad Axe tenon saw

Years ago, Japanese saws were the staples of my saw armamentarium. They offered very good quality and value.

However, another big reason for using them was to save myself the trouble of maintenance. The replaceable blades, especially those by Gyokucho and Z brand are of remarkably consistent and high quality, especially for their prices. Back then, alternatives were to rehabilitate vintage saws, or try to soup up a new, but low quality, Western saw.

Times have changed.

The renaissance of saw making that started in the US in the 1990s with Pete Taran and Patrick Leach’s Independence Tool Company (since folded) was followed by several fine saw makers producing at artisan volumes. Equally important, more sources of excellent information became available to help us with understanding, using, and maintaining Western handsaws.

At the head of the class, in my opinion, is Bad Axe Tool Works. Their combination of quality, performance, and range of options exceed any maker in the world today. If you read this blog much, you know that I am not given to overstatement. I also have had the opportunity to try out saws from a substantial majority of the artisan makers around today. I use Bad Axe saws.

I have seen Mark Harrell and his crew work their apparent magic in his Wisconsin shop, making, sharpening, and fixing saws, and I can tell you that it is no magic at all. They simply work with incredible care from an awesome base of knowledge and skill.

Now, back to the saw maintenance issue. Mark has made that a much more accessible job by producing solid, clearly written information on saw sharpening, repair, and restoration. Short of visiting his shop, please see the trove of instructional information available on the BATW site. It will elevate your skills and understanding tremendously.

First-rate tools, knowledge, and skills – that’s what we want. Times have indeed changed in woodworking.

Category: Tools and Shop  | 7 Comments
Author:
• Tuesday, March 14th, 2017

crosscut technique

A reader recently emailed me to ask the best kind of question – a simple one with broad implications. Using only hand tools, he asked, how do you “cut several pieces of wood exactly to length.” He stated further that he wanted to make several pieces “exactly the same length.”

There are really two issues here. In furniture making, it is not often that you need to saw a piece to an exact absolute length, such as 18 5/16″. By exact, I mean to a tolerance well under 1/16″. Usually, a component must be cut to precisely match another part or an opening, after the general dimensions of the piece have been established. What’s more, most of the time, sawing to length does not demand high precision.

Let’s examine the matter by looking at the fundamental types of construction in furniture making.

Post and rail

In a table frame, the critical matter is for the lengths of the aprons on opposite sides to be equal. The precision comes from knifing the tenon shoulder lines with the pieces ganged together. The absolute distance between the shoulder lines is not critical; it just has to be the same for the pair of aprons.

length technique

The sawn crosscut at the end of the apron just defines the length of the tenon, and since there should be extra depth in the mortise, it does not have to be a precision cut. As for the legs, gang them together, mark out the ends of the mortises, and cut the legs to length with adequate precision by hand.

Frame and panel

For a cabinet door or back panel, the precision in the frame components comes from knifing pairs of shoulder lines together. Later, you will plane the slightly oversized frame to fit the door opening or case. As for sawing the panel to length, those crosscuts end up inside the grooves, which give some margin for error. So again, the crosscut hand sawing just has to be good, not dead-on precise.

Board construction

For a case or box, the absolute dimension is again much less important than making the opposite sides match. This is where shooting is an essential technique of woodworking. Saw the two boards to length as consistently as you can, shoot three ends, then incrementally shoot the fourth and final end to make two boards of exactly the same length with clean, square ends.

shooting to length

Oops, you overshot that fourth end? Shoot the end of the other board down to match. The absolute length is not important.

By contrast, fitting a drawer front to an opening is a matter of meeting an absolute measurement, and there is no going back. For this, shooting allows you to sneak up on a precision fit in a way that sawing cannot.

By the way, to answer another question that came up, one cannot use a stop block on a shooting board set up to trim endgrain because you are not cutting to a line. Rather, you are removing a certain amount with each pass, based on the blade depth. You must advance the board after each pass, so stop block set-ups are not used.

One more thing – and it’s important

Even if you use a table saw and miter gauge/sled to make your crosscuts, as I do, you still want to be able to nuance them with hand techniques. Very often in fine woodworking, we want to intentionally tweak a component slightly out of square, make something not quite straight, or correct a fit.

Theoretical exactness is often not the goal, and understanding the variance can elevate your technique and results. That is why incremental hand-tool techniques are so valuable. Some examples of this follow.

The top and bottom of a solid wood case may intentionally have ends that are not quite square because you want the case a trace wider at the back than at the front to allow well-fitting inset drawers.

Even if those table aprons were supposed to come out just right, you find during dry assembly that you need to tweak one shoulder with a shoulder plane. Now that apron does not quite theoretically match the opposite one, yet the whole piece fits together just right.

You can adjust the side snugness of a drawer front in its opening with the last shooting pass or two.

After fitting the hinges for a cabinet door, even though everything was supposedly dead square to start with, you plane the edges of the door to produce surrounding gaps that are consistent to the eye.

In the craft of woodworking, sometimes what you thought was exact is not right.

Category: Techniques  | 2 Comments
Author:
• Monday, March 13th, 2017

Ulmia auxiliary vise #1812

Ulmia used to produce this auxiliary vise, model #1812. I first saw it many years ago on page 145 of my copy of the 1977 hardcover Van Nostrand Reinhold edition of The Fine Art of Cabinetmaking, where the author, James Krenov, commented that it is “well made and very useful.”

I wish I bought one before Ulmia discontinued production. I have tried with some success to use a modified small drill-press vise, a shop-made wooden vise, and handscrews to gain some of the functionality of the Ulmia. Still, I coveted a real #1812 hilfs-spannstock.

About three years after posting the above links, and missing out on Ebay in the meantime, someone from Germany contacted me to offer a new-old-stock #1812. I jumped at it and have since found it to be every bit as useful as I had anticipated.

The vise jaws are 2 3/8″ x 1″. The fixed jaw is further from the knob, while the other jaw moves on a 9/16″-diameter, acme-threaded screw feed to produce a maximum opening of 2 1/8″. The wooden base is 5 3/4″ x 3 1/4″ x 2 1/2″. The vise is surprisingly beefy for its size.

Ulmia auxiliary vise #1812

The hole in the base makes it convenient to clamp to the bench top, as shown in the top photo, for a wide variety of small-scale tasks. With the #1812 held recessed in the tail vise, as in the photo just above, the jaw still travels freely. You can adjust the protrusion of the jaws above the bench surface to keep them out of the way while planing or paring small work pieces.

It would be good to have this very useful tool back in production. I wonder if Ulmia would consider making it again, or, depending on patent restrictions, if another toolmaker, such as Veritas, would be interested in producing it. I am sure that woodworkers who would own one would turn to it often, as I do.

Category: Tools and Shop  | 10 Comments
Author:
• Tuesday, February 28th, 2017

workbench

Who is learning? Who is a student of woodworking? All of us, I contend, are, or at least should be, and almost always.

Now, the healthy innocence of a student, not to be confused with a lack of confidence, is apparent when you start learning a new fundamental skill, such as paring with a long paring chisel. The same is true when you apply solid basic skills to a completely new task, such as using your layout, sawing, and chiseling skills to execute unfamiliar joinery, such as a multiple mortise and tenon.

However, the presence of a learning situation is not so apparent at other times. An example, might be when you use a skill set that you have long mastered, such as cutting a through dovetail joint, in a different circumstance. You are very good at making that joint but this time the wood is different, a bit harder perhaps, and your customary slope ratio creates problems. You discover that you must also adjust your tolerances, tooling, and expectations.

Thus, this too is a learning situation but you may not recognize it as such. You are, in effect, overconfident. Worse, you are mentally closed but you should be open.

I believe that an absolute requirement for learning is to first recognize and accept that I do not, right now, know. Experience and previous successes must not obscure this.

To learn – and learn, we must – we have to see the door, open the door, and walk through it.

The late, great basketball coach John Wooden: “It is what you learn after you know it all that counts.”

Category: Ideas  | 3 Comments